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Variational Methods in Cavitational Flow

P.R. Garabedian
New York University, Courant Institute of Mathematical Sciences

251 Mercer Street
New York, NY 10012, USA

ABSTRACT

The study of cavitational flow is formulated as a free boundary problem for the Laplace equation in
three dimensions. Constant pressure free streamlines are determined by a variational principle for
the virtual mass. Steepest descent applied to minimization of the potential energy suggests a natural
iteration scheme to calculate the shape of the cavity bounded by the free streamlines. Numerical
methods enable one to estimate the drag and the geometry of the flow. Another version of the
variational principle plays an important role in plasma physics and the theory of magnetic fusion.
Novel stellarator configurations for a thermonuclear reactor have been designed by running large
computer codes based on these mathematical ideas.

1. Introduction
We shall be concerned with steady, irrotational flow of an incompressible fluid with a free surface on
which the pressure is constant. This is a difficult mathematical problem because the shape of the
free boundary must be calculated as part of the solution. Our approach is to apply the principle
of minimum virtual mass, in which the answer appears as the solution of a problem in the calculus
of variations that is easier to treat both theoretically and numerically. The appearance of potential
energy in the analysis may be unconventional in fluid dynamics, but we shall show how this can be
used to find the drag, and afterwards we shall present another application of the same method in
magnetohydrodynamics where the physics becomes more natural.

2. The Riabouchinsky model
Steady irrotational flow of an incompressible fluid in the plane is governed by a complex potential

+= iV) whose real and imaginary parts satisfy the Cauchy-Riemann equations

0x = gy, Y =

The horizontal and vertical components of the velocity are found from the derivative

w = u-iv = d•/dz

of ( as an analytic function of the complex variable z = x + iy, and the pressure p is found from
Bernoulli's law

q2 p
_ + - const.

2 p

where q = wl is the speed. Thus along any streamline V) = 0 bordering a cavity we arrive at a free
boundary condition of the form

p = const. , q = const.

In the Riabouchinsky model of cavitational flow the obstacle consists of two symmetrically located
vertical plates joined by a pair of free streamlines. A solution is obtained by mapping the upper half
of the c-plane conformally onto a semicircle in the hodograph plane slit along a segment of the u-axis.
Another interesting method of finding the flow is to study the geometry of the analytic function

g(z) = , _'(Z)2dz =
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which has boundary values indicated at the right along a free streamline where q = 1. This function
has to do with the forces on the vertical plates and is suggested by the conservation of momentum.
The solution of the Riabouchinsky free boundary value problem can be obtained by using the Schwarz-
Christoffel formula to calculate the two auxiliary functions

4(z) = z +g(z) , I(z) = z-g(z)

which map the flow conformally onto polygonal domains of the complex plane. These classical methods
apply primarily to plane flow and play a significant role in the study of supercavitating hydrofoils.
However, we do not discuss them in detail here, but turn our attention instead to three-dimensional
flows such as occur in the study of torpedoes.

3. The principle of minimum virtual mass
Let us consider a flow of water past a body followed by a cavity Q in three-dimmensional space.
The velocity potential of the flow is a harmonic function 0 whose normal derivative vanishes at the
boundary, and at infinity it has an expansion of the form

ax
3

with a coefficient a related to the virtual mass. On the free surface F bounding the cavity it satisfies
the additional condition

(VO)2 = const.

because the pressure is constant there. The shape of the cavity has to be adjusted to meet this
nonlinear free boundary condition, and that is what makes the problem hard mathematically.

Figure 1: Geometry of the Riabouchinsky model of plane flow around a finite cavity Q displaying the
free stramlines F and two vertical fixed boundaries C.

The kinetic energy, or virtual mass,

M = / (V _ VX)2 dV

is a Dirichlet integral over the flow region. We also introduce the volume

which is an integral over the cavity and the body. An application of the divergence theorem leads to
the remarkable formula

47ra = M + V

relating the virtual mass to the coefficient a in the expansion of the velocity potential at infinity.
We proceed to discuss variational formulas for a and V under a suitable hypothesis about smoothness
at the boundary of the flow. Let us shift each point on the free surface by an infinitesimal distance
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6n along its normal n. It is evident that the first order perturbation of the volume is given by the
formula

6V81 - 6/8ndS,

where integration is performed over the free surface.
Next observe that according to the divergence theorem, the harmonic function 0 minimizes the Dirich-
let integral regardless of conditions at the boundary because its normal derivative vanishes there. It
follows that the perturbation of the coefficient a under the shift 6n can be computed with 0 held fixed.
Therefore we obtain an equally simply result

47r~a =V)26 dS

giving the first variation of the virtual mass. This means that a flow satisfying the free boundary
condition

O2 = A

can be found from the variational principle

47raa- A6V = 0,

where A is constant. The result is better stated in the form

M - OrV = minimum

of an extremal problem, where u = A - 1 is the cavitation parameter.
The theorem we have described, which we refer to as the principle of minimum virtual mass, makes
sense only when the cavity is finite so the improper integrals that occur are convergent. This becomes
the case for the Riabouchinsky model of cavitational flow. In that model two symmetrically situated
plates C are connected by the free surface F of a cavity Q. For plane flow the geometry is illustrated
in Fig. 1. Note that the cavitation parameter (T is positive.
A physical interpretation of the variational formula for the virtual mass just states that work equals
force times displacement. Details of a mathematical proof are easier to understand for the example
of a vortex ring, which will come up again in our discussion of magnetohydrodynamics. Suppose 0 is
a harmonic function in a torus D with a unit period and a vanishing normal derivative, and let 0* be
the analogous function in a neighboring torus D* obtained by a shift 6n of the boundary. If M now
stands for the Dirichlet integral of 0 over D and M* stands for the Dirichlet integral of 0* over D*,
what we want to show is that

M.*_M = j,/(VO)26n dS,

where higher order terms are neglected and the integration is performed over the surface of D. This
is true because the Dirichlet integrals of 0* and 0 over D differ by a term of second order in 6n. To
see that we apply the divergence theorem to establish the identity

[[[ [[fff~
,Vo- - )dV = ,- -- AO dV = 0,

111,70 - , U On ,U

which asserts that because of the natural boundary condition satisfied by 0 its Dirichlet integral over
D is stationary. The desired result now follows because

(VO+ VO*-V)2 = (VO) 2 + 2V .(V*- V) +(VO*-v)2

4. Calculation of the drag
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For special shapes of the fixed boundary the principle of minimum virtual mass can be used to
calculate the drag. In the Riaboucnsky model suppose that the free surface F is a sheath connecting
a symmetric pair of circular disks situated in planes perpendicular to the x-axis. Let us magnify the
whole configuration by the factor 1 + , where 17 is a small positive number. For this infinitesimal
normal displacement of the boundary of the flow our variational formulas yield the relation

6M-06V = //[(VO)2 -A]6n dS

Along the free surface the integrand vanishes, so

6M - aV = rjh //J[(VO)2 -A] dS,

where the integrals are now evaluated only over the disks, and 2h is the distance between them. On
the other hand, by Bernoulli's law the integral

D = 1 J 1 [l+,-(VO)2] dS
2 i

over just one disk is the drag. Since V and M have the dimensions of length cubed, and since the
shift 6n is defined by a magnification, this establishes the remarkable relationship

4hD = 3(rV -M)

between the virtual mass and the drag for Riabouchinsky flow past a circular disk.
If the formula we just established for the drag were generalized to the case of two parallel plates of
elliptical cross section, then a continuous transition could be made from axially symmetric over to
plane flow. It is not hard to see that invariance of the drag under changes of the eccentricity of the
ellipse would then lead to a contradiction. We conclude that it is naive to assume that the symmetric
model of Riabouchinsky flow always has solutions in three dimensions.
To compute the drag more generally one needs to solve the cavitational flow problem numerically. A
systematic scheme to accomplish that is suggested by applying the concept of steepest descent to the
principle of minimum virtual mass. This means that to improve on a given approximation of the free
surface one should shift it along the normal by an amount 6n proportional to the error (VO)2- A in
the free boundary condition. This concept has been implemented in computer codes that run quite
succesfully. We shall discuss the matter in more detail when we describe an application to magnetic
fusion in the next section.
Another attack on the drag problem has been developed using a stream function V) which satisfies the
partial differential equation

C 0V)A -- =0
Y ay

with c = 0 for plane flow and c = 1 for axially symmetric flow. For other values of C the boundary
value problem still makes sense, and it can be solved in closed form in special cases. That enables one
to estimate the drag for a circular disk by interpolation from known values. For a circular disk with an
infinite cavity the drag coefficient is found to be CD = 0.827. Similarly, the contraction coefficient for
a circular orifice in a plane wall is C, = 0.59, a result differing from the answer obtained in the case of
plane flow. Presently of course many more complicated free boundary problems are being investigated
computationally by a variety of new methods.

5. Variational principle of magnetohydrodynamics
Another enlightening application of the variational principle plays an important role in the plasma
physics of magnetic fusion. The concept of a thermonuclear reactor is based on fusion of hydrogen
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at very high temperatures to form helium and release neutrons that penetrate a blanket which is
heated up to supply power. The hydrogen is ionized to become a plasma so hot that it should not
encounter material walls and must be confined by a magnetic field. The charged particles of the
plasma tend to follow lines of force in the magnetic field, whose geometry is therefore usually chosen
to be a torus. Most of the magnetic lines sweep out nested flux surfaces rather than ergodic regions
so that the confinement of the plasma is adequate for fusion in a power plant. There is an analogy
here with vortex rings and rotational flow of an incompressible fluid governed by the Euler equations.
We shall review the mathematical theory of equilibrium and stability in magnetohydrodynamics that
is required to address this problem.
We study the equilibrium and stability of a plasma by solving magnetostatic equations

V.B = 0, JxB = Vp

analogous to the Euler equations, where B is the magnetic field, J = V x B is the current density, and
p is the pressure. In the analogy the velocity of the flow corresponds to the magnetic field and the
stagnation enthalpy from Bernoulli's law corresponds to the pressure of the plasma. We shall explain
our variational theory in the context of the plasma problem, which will show how islands whose flux
surfaces are shaped like vortices can be modeled in practice by current sheets.
Let us rewrite the partial differential equations of magnetostatics in a conservation form

V.B = O, V.T = 0

involving the Maxwell stress tensor T, which is given by

Tjk = BjBk - jk(B2/2 + p)

where 6jk is the Kronecker delta. To avoid assuming the existence of partial derivatives, we apply the
the divergence theorem and say that B and p define a weak solution of the equations whenever

/JEJ k a dV=O0, (9V" ~~ dV = 0
OXkJIJ k k

over any volume of integration, where 4'i, V)2 , 6) and V) are arbitrary continuously differentiable func-
tions of compact support. The simplest example of a weak solution is a magnetic field with just one
nontrivial component B 1 that is a nondifferentiable function of x2 and X3, while the pressure satisfies
the condition B7/2 + p = const.
These formulas are comparable to the conservation of mass

Ouk
SJO1k - 0

and the conservation of momemtum

0 UUk 0

OXk Poxj

for steady flow of an incompressible fluid without viscosity in hydrodynamics. Another application
of the divergence theorem establishes that any smooth surface of discontinuity of a weak solution
of the magnetostatic equations must be a current sheet in the sense that it is a flux surface of the
magnetic field across which B may have jumps, but B 2 /2 +p remains continuous. It is our contention
that small magnetic islands can be modeled computationally by such current sheets when a finite
difference scheme with adequate numerical viscosity is applied. We use the variational principle of
magnetohydrodynamics to show how this concept has been implemented in practice. The analogy
with the problem of cavitational flow is evident.
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The variational principle of magnetohydrodynamics enables one to study questions of toroidal equi-
librium and stability in plasma physics by considering the extremal problem

,jf[B2/2 -p]dV = minimum

for the potential energy subject to appropriate flux constraints on the vector field B, which is supposed
to be divergence free. This leads in a natural way to the Clebsch representations

B = VsxVO

of B in terms of flux functions s and 0 and potentials 0 and (. We make a nested surface hypothesis
under which s becomes the single-valued toroidal flux and p is a prescribed function of s. The flux
function 0 is multiple-valued on each torus s = const., with periods related to the rotational transform
it = t(s), which measures how much a magnetic line turns in the poloidal direction during a complete
circuit in the toroidal direction. For fully three-dimensional equilibria called stellarators no constraint
is imposed on i in the variational principle and the potential 0 has no poloidal period, whereas for an
axially symmetric tokamak i is a prescribed function of the toroidal flux s and 0 acquires a nontrivial
poloidal period equal to the net current.

Figure 2: Computational model of fusion plasma in a thermonuclear reactor based on the stellarator
concept for magnetic confinement of hot ions and electrons. Twelve moderately twisted modular coils,
half of which are plotted, produce a magnetic field whose strength has a desirable symmetry displayed
by the color map of the plasma surface.

Straightforward perturbations of the potential energy lead to variational equations that are equivalent
to classical magnetostatics. Before a standard integration by parts they furnish a practical definition,
essentially in conservation form, of what we mean by a weak solution without derivatives. For a
stellarator at zero /3 = 2Kp)/B 2 the result reduces to Dirichlet's principle for harmonic functions, so
the configuration is stable. The NSTAB computer code has been written to implement the variational
principle of magnetohydrodynamics numerically and perform an analysis of nonlinear stability for
positive /3. It enables us to capture small magnetic islands in a convincing way when we use a mesh
size for s larger than the island width.
In stellarators it is convenient to renormalize the multiple-valued flux function 0 and the Clebsch
potential 0 so they become invariant poloidal and toroidal angles. If one then represents the magnetic
field strength by a Fourier series of the form

1
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the coefficients Bm.,,,, which depend on the toroidal flux s, are known collectively as the magnetic
spectrum. By solving the magnetostatic equations for J and taking a divergence we can show that
there is a comparable expansion

J • B p rnBmn,,_,
B 2  PZ ---- cos(nO -[n - ,- V)

for the parallel current, which is analogous to the swirl in fluid dynamics. In three dimensions the
small denominators n - tin are seen to vanish at a dense set of rational surfaces where 1 = n/rn.
Therefore smooth solutions of the equilibrium problem that have three-dimensional asymmetry do
not in general exist, so that one should only try to construct weak solutions. Correspondingly, the
only smooth vortex rings in steady flow must be axially symmetric.
The NSTAB code includes a remarkably robust calculation of the coefficients Bm. In the spectral
method that has been used it is helpful to filter the Fourier series defining the solution. This is
especially true in the case of the parallel current, which requires evaluation of a divergent series.
It turns out that many aspects of equilibrium, stability and transport just depend on the magnetic
spectrum, together with the profiles of pressure and rotational transform. For tokamaks there is a
two-dimensional symmetry such that only the column B,0 differs from zero, and similarly for straight
two-dimensional stellarators only the diagonal B m... is present. Because of their two-dimensional
magnetic symmetry, these equilibria have excellent transport properties. The problem of design is to
exploit this theory to arrive at configurations for a fusion reactor that meet a broad range of physics
and engineering requirements.

6. Quasiaxially symmetric stellarators
Fast computer codes with a three-dimensional capability are an essential tool for the design of efficient
stellarators. Here we shall discuss in some detail a stellarator called the Modular Helias-like Heliac 2
(MHH2) that has quasiaxial symmetry characterized by very small coefficients Bm with n : 0. This
was discovered recently by running the NSTAB code. It has just two field periods and the aspect ratio
of the plasma is only 2.5. TIransport is almost as good as that in a tokamak because of the comparable
symmetry. Moderately twisted modular coils to generate the required magnetic field can be wound
on a control surface surrounding the plasma, whose shape brings the total rotational transform into
an acceptable range 0.5 > , > 0.4. Ample space is available for the hardware requirements of a power
plant (cf. Fig. 2).
We studied nonlinear stability of the MHH2 stellarator by looking for bifurcated equilibria over the
full torus that do not have the helical symmetry of the solution with two field periods. The most
dangerous mode we found running the NSTAB code has a complicated ballooning structure that is
localized in an outer rim of the plasma. Equilibrium seems to impose a more severe limitation on /3 for
the MHH2 than stability. Only for broad pressure profiles do good magnetic surfaces prevail when /3 is
raised as high as 5%. Thus calculations by the NSTAB code used to invent the MHH2 establish that
its equilibrium and stability limits on average /3 for a relatively broad pressure profile lie somewhere
between 4% and 5%. The configuration is sufficiently robust to allow for further optimization. Less
painstaking computations of linear or local stability that ignore the difficulties with parallel current
at magnetic resonances give misleading predictions about performance. Numerical simulations built
around the construction of weak solutions seem to be the best that mathematical theory can contribute
to the problem of design in this situation.
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